Resit Kaleidoscope Mathematics (WPMA18002)

 Statistics and Probability

 Statistics and Probability}

Monday December 3, 19:00-22:00, A. Jacobshal 01

- During the exam it is allowed to use a simple calculator such as the CASIO FX-82 or TI30.
- Give in all cases the reasoning leading to your answer.
- Provide each page with your name and student number.
- Use a sufficient number of decimals to make your computations unambiguously.
- This test consists of 4 exercises. In total you can score 100 points for it. We wish you lots of success with its completion!

1. Deck of Cards. Each of four decks of 52 cards are carefully shuffled such that their order is completely random. Suppose you receive one card from each deck. Let X be the number of aces received. Compute the probability mass function of $X .20$
2. Each Player One Ace. A deck of 52 cards is distributed completely ad random among four players such that each player gets 13 cards. Find the probability that each player gets exactly one ace. 20
3. Reading errors. The alignment of the magnetic tape and head in a storage system affects the performance of the system. Suppose that in 10% of the read operations there are skewed alignments, 5% of the read operations there are off-center alignments, and the remaining read operations are properly aligned. The probability of a read error is 0.01 from a skewed alignment, 0.02 from an off-center alignment, and 0.001 from a proper alignment.
(a) 15 What is the probability of a read error?
(b) 15 If a read error occurs, what is the probability that it is due to a skewed alignment? And, what is the probability of a read error due to off-center alignment? Finally, what is probability of a read error in case of proper alignment? What is your conclusion?
4. Consider a Markov chain $\left\{S_{n}\right\}_{n \geq 1}$ with states $\{1,2\}$ and probability transition matrix

$$
P=\left[\begin{array}{ll}
\frac{3}{4} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right]
$$

(a) 5 Is the chain irreducible?
(b) 5 What is the proper interpretation of the event $S_{n+2}=2 \mid S_{n}=1$.
(c) 10 Compute the probability $P\left(S_{n+2}=2 \mid S_{n}=2\right)$.
(d) 10 Find the stationary distribution of the chain.

Modular Arithmetic

- Give in all cases the reasoning leading to your answer.
- Provide each page with your name and student number.
- This part of the test consists of 3 exercises. In total you can score 10 points for it, one point you get for free.

1. (a) [1 point.] Determine integers x, y such that $x \cdot 10^{2}+y \cdot 13^{2}=42$.
(b) [2 points.] Suppose that x, y, a, b are integers and that $x \cdot a^{2}+y \cdot b^{2}=42$. Show that $\operatorname{gcd}(a, b)=1$.
2. Denoting elements $a \bmod 100$ by \bar{a}, and with x considered as an element of $\mathbb{Z} / 100 \mathbb{Z}$,
(a) [1 point] Find an x such that $\overline{17} \cdot x+\overline{5}=\overline{24}$.
(b) [1 point] Does x exist such that $\overline{36} \cdot x=\overline{10}$?
(c) [1 point] How many of the elements of $\mathbb{Z} / 100 \mathbb{Z}$ are units?
3. (a) [2 points.] Prove that $5 \mid\left(2^{n}+3\right)$ if and only if $4 \mid(n-1)$.
(b) $[1$ point. $]$ Show that $2^{10} \equiv-1 \bmod 25$ and that $25 \mid\left(2^{81}+3\right)$.

Dimensional Analysis

- All answers need to be justified.
- Each exercise of this part has a certain amount of points, summing up to 9 points. The grade of this part will be computed as grade $=1+$ (points obtained). Please answer each exercise on a different sheet to facilitate the grading.
- A table with dimensions can be found on the last page of this exam.
- Please be aware that, in the context of this course, squared brackets are used for denoting dimensions of a physical quantity. If used otherwise, results will be considered wrong.

1. In cardiology, the pressure difference δ across a narrowed blood vessel is usually assumed dependent on the following variables: the mass density of the blood ρ, the average velocity before the valve v_{1}, the average velocity after the valve v_{2}, the area that the fluid crosses before the valve S_{1}, and the area S_{2} after the valve.
(a) 2.0 Assume that δ depends only on v_{1}, v_{2}, ρ. Using dimensional analysis, write a mathematical model for δ. Indicate explicitly the non-dimensional groups, if any appear.
(b) 1.0 Explain if the mathematical model that you obtained in Exercise 1(a) could take or not the particular form of the so-called Bernoulli equation?

$$
\delta=\frac{\rho}{2} v_{2}^{2}-\frac{\rho}{2} v_{1}^{2}
$$

(c) 2.0 Using dimensional analysis, build a mathematical model for δ in terms of $\rho, v_{1}, v_{2}, S_{1}, S_{2}$. Verify that if you remove the dependence on S_{2}, you obtain the same model than in Exercise 1(a).

